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The numerical solution of three-dimensional fluid flow problems in multiply connected 
regions using the vector potential formulation is reviewed. The major diffkulty in such a for- 
mulation is the determination of boundary conditions for the vector potential. Two existing 
boundary formulations are examined, and it is shown that whilst one of the formulations leads 
to indeterminate vector potential boundary conditions for multiply connected solutions, the 
other presents well-defined conditions but is numerically not implementable. A new alternative 
is then proposed, and its validity and practicability are demonstrated with the solution of 
several annular cavity problems. c! 1966 Academic Pless, Inc. 

1. INTRODUCTION 

The idea of expressing a three-dimensional hydrodynamic velocity field in terms 
of a vector potential follows directly from Helmholtz’s Decomposition Theorem 
(1858), which partly states that any vector field may be decomposed into cm&less 
and divergenceless components. In spite of such a longstanding recognition, the 
theory has to this date not been widely implemented in computations. The main 
reason for this has been the need for the solution of several additional variables, 
namely, the components of the vector potential and vorticity. Three-dimensional 
flow solvers are known to be computationally demanding. and the introduction of 
these variables inevitably further increases the computer memory requirement. 
However, in view that storage limitations will become less critical as modern com- 
puters become evermore powerful, and since Aziz and Hellums [I] have shown 
that the vector potential approach can lead to a faster and more stable convergence 
than that for the primitive variable formulation, the vector potential will undoub- 
tedly play an increasingly important role in the solution of 3-D fluid dynamics 
problems. But for the present, the lack of research and development in the use of 
the vector potential has limited our understanding of this special variable. Although 
some workers have successfully applied the well-established formulation of Hirasaki 
and Hellums [2] to simply connected regions, and attempts have been made to use 
the relatively recent contribution of Richardson and Cornish [3] for multiply con- 
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netted problems, few have understood the implications and consequences of these 
models. 

It is the purpose of this paper to clarify and stress the limitations of the 
previously developed formulations, with special attention paid to multiply connec- 
ted solutions. An alternate technique is then presented for dealing with the vector 
potential boundary conditions for some important multiply connected regions. 

2. THE VECTOR POTENTIAL FORMULATION 

Use of the vector potential in solving the Navier-Stokes equations of fluid 
motion has been successful for flow problems in confined simply connected regions. 
Examples include the works of Aziz and Hellums [ 11: Mallinson and the Vahl 
Davis [4], and Ozoe et al. [IS]. Any departure from the simplest form of solution 
regions, however, leads to much more complicated vector potential boundary con- 
ditions. Recently, Aregbesola and Burley [6] implemented the vector-scalar poten- 
tial formulation of Hirasaki and Hellums [7] to tackle several through-flow 
problems. However, it has since been shown by Wong and Reizes [S] that the 
inclusion of the scalar potential destroys the most important feature of the vector 
potential (i.e., the automatic enforcement of local mass conservation) and can lead 
to significant errors in computations. An alternative formulation was presented in 
[8] to overcome the difficulty for at least an important class of through-flow 
problems, viz., flows in ducts of constant but arbitrary cross sections. 

One area of the vector potential formulation which has remained unexplored is 
its application in multiply connected regions. This is largely due to uncertainty and 
confusion involved in determining the “correct” vector potential boundary con- 
ditions in such cases. Although Hirasaki and Hellums [2] presented a general 
boundary formulation which was thought to be applicable for multiply connected 
regions, it will be shown that their formulation is in fact incomplete. Richardson 
and Cornish [3] on the other hand had derived rigorously an alternate set of 
boundary conditions for a general region of any connectivity. However, the only 
reported implementation of this formulation by Leonardi et al. [9] had not been 
successful due to difficulties which will later become apparent. 

Basic Equations 

Since the derivation of the equations of motion in terms of the vorticity and vec- 
tor potential may be found in many references (e.g., [4, 8]), the set of equations 
describing the motion of an incompressible fluid is therefore presented below 
without justification. 

(a) Vorticity Transport. 

Z+(V-v):-(p)v= +-& V2L+VxF, ( > (2.1; 
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where V is the velocity, Re is the Reynolds number, F is the body force, and j is the 
vorticity defined by 

(b) Continuity 
<=vxv. (2.2 1 

v.v=o. (2.3) 

(c) The Vector Potential. The continuity equation is automatically satisfied if 
the velocity is expressed in terms of a vector potential v such that 

v=vxw. (2.4) 

The substitution of Eq. (2.4) into Eq. (2.2) yields, for a solenoidal vector potential 
field, the relationship 

v2yf= -5, (2.5) 

in which 

v.ly=o. (2.6) 

The boundary conditions for the vorticity & are relatively straightforward, and 
various formulations have appeared in the literature (e.g., [4, lo]) which have been 
successfully implemented, and therefore warrant no further discussion. 

The vector potential boundary conditions on the other hand require some atten- 
tion as the non-uniqueness of the vector potential permits a multiplicity of its boun- 
dary formulation. In the derivation of Hirasaki and Hellums [Z]. only the normal 
component of velocity on the boundary is considered. This yields, for each of the 
distinct boundary surfaces, a second-order partial differential equation relating an 
auxiliary vector B (in which B is normal to the boundary surface, and whose sur- 
face-curl equals the tangential components of v), the geometric characteristics of 
the surface, and the normal component of the velocity on that surface. The above 
authors pointed out that for boundaries which coincide with one of the usually 
adopted coordinate surfaces (i.e., plane, cylindrical, and spherical surfaces), the 
boundary conditions for the vector potential reduce to relatively simple forms. For 
example, on a nonporous plane surface in Cartesian coordinates, whose normal is 
in the z-direction, the analysis can lead to the usually accepted conditions 

(2.7) 

Whilst the procedure of setting the boundary vector potential normal to the boun- 
dary surfaces is appropriate for a simply connected solution region, it is, however, 
not necessarily correct for the multiply connected case. Consider the doubly con- 
nected region shown in Fig. 2.1. On each of the solid surface, the more general 
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FIG. 2.1. Boundary conditions for the tangential components of \v ir? a double connected regior?. 

boundary formulation proposed by Hirasaki and Hellums [2] should apply. For 
instance, on the plane boundary whose normal is in the ),-direction, we have 

w, F=O’ 
and 

where 

i 2.8 i 

(2.10, 

One of the simplest non-trivial solutions of Eq. (2.9) is 

B,.=zx+flz+y, 

where cx, /I. and 1’ are constants. It then follows from Eq. (2.10) that 

(Z.il) 

k= -B ( = C, , say), i)z=a=C,. !2.12j 

Applying a similar analysis for the other boundaries gives the general result that the 
tangential components of the vector potential on each boundary may be set to a 
constant. For the solution region of Fig. 2.1, this results in 20 constants, C, to C?,, 
which are related by certain physical constraints. One necessary condition which 
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FIG. 2.2. x - y cross section of the solution region 

was pointed out in [2] is that the vector potential must be continuous across the 
edge of any adjoining boundaries. This immediately requires that 

c,=c~=c,=c,,=c,,=c,, i=KI, wJ, 
c, = CT = c, I = Cl5 = c,, = czo (=Kd, 

c2=c,=c6=c8 (=KI), 
.cIO = c,* = CI‘I = Cl, (=Kd 

(2.13) 

These four resulting constants (K, to &) are also not entirely arbitrary. As will be 
demonstrated, two of them (K, and K,) are in fact related. Consider a cross section 
of the region parallel to the s - y plane (Fig. 2.2). For steady incompressible flow, 
the net volumetric flow rate through this section must be zero. That is, 

if 
V.iidS=O, (2.14) 

s 

or 

in which 12’ is the z-component of V. 
Writing u’ in terms of the vector potential, we have 

(2.15) 

(2.16) 

Applying Green’s integral theorem for multiply connected plane surfaces, Eq. (2.16) 
becomes 

(2.17) 
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where the sense of the above contour integrals is as indicated by the arrow heads in 
Fig. 2.2. It is easily seen from Fig. _. 3 2 that each of the integrals in Eq. (2.171 
vanishes, so it follows that the condition described by Eq. (2.15) is satisfied, 
irrespective of the values of K, and Kz. 

Consider now a cross-section parallel to the x -z plane (Fig. 2.3). Again for 
steady-state conditions, the combined volumetric flow rate through the surfaces S; 
and Sz is required to be zero. Application of Eq. (2.14) results in 

if 
v dx dz + v dx dz = OI 12.B8) 

Sl 

which may be rewritten as 

6 vdxdz= - 
L# 

v d-x dz = Q ‘7 19’ I-.*, b 
Sl s> 

where v is the y-component of V, and Q is the circumferentia: volumetric flow rate. 
Expanding Eq. (2.19) and again applying Green’s theorem results in 

Performing each of the contour integrals yields 

h(K, - K3) = -h(K3 - K4). (3.21) 

Again, it is seen that the condition of zero net flow is satisfied irrespective of the 
values of K, and K4. But since each side of Eq. (2.21) represents the circumferential 
volumetric ffow rate Q, k; and K., cannot be chosen arbitrarily as Q must have 
some predetermined value which is dependent on the imposed physical conditions. 
The relationship between K, and K, may therefore be written as 

FIG. 2.3. x - 2 cross section of the solution region. 
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With four constants and only one constraint (Eq. (2.22)). it is now apparent that 
three of the constants may be chosen arbitrarily. For simplicity, the value zero is 
the chosen, yielding 

K,=KZ=K3=0, 

K4= Q/h =K, say. 
(2.23) 

Unfortunately, Eqs. (2.23) are yet of little use since in most cases Q is an unknown, 
and so it seems that an alternative formulation is required. 

Richardson and Cornish [3] proposed a formulation which, at least in principle, 
may be used in multiply connected regions. Its development is complex, and the 
interested reader is referred to their paper for the full derivation. In contrast to the 
Hirasaki and Hellums formulation, they showed that it is possible to specify a vec- 
tor potential whose normal component vanishes on the boundaries. That is, 

on the boundaries. 
(c1,2=0 (2.24) 

The boundary conditions of the other components of w are then obtained by 
considering the tangential components of velocity on the surface. It may be shown 
that if Eq. (2.24) is satisfied on a boundary, then the definition of the vector poten- 
tial (Eq. (2.4)) requires that 

(2.25) 

where 4 n, <,,, r,? are scale factors, and 12, ri, t, denote the normal and the two 
independent tangential directions of the boundary surface, respectively. 

For computational purposes, E,qs. (2.24) and (2.25) constitute a usable set of 
boundary conditions for the vector potential. However, its implementation by 
Leonardi et al. [9] yielded results which were later realised to be incorrect [ll]. 
The problem stems from the fact that the normal velocity at the boundary is not 
forced to be zero, thereby permitting possible “leakages.” Consider the solid 
boundary of a rectangular solution region which is contained in the Y-Z plane. 
From Eqs. (2.24) and (2.25); the appropriate boundary conditions are 

For there to be no through-flow on this plane, the correct solution also requires 

(2.27) 



THE VECTOR POTENTIAL 

or simply 

(2.28) 

This, however, is neither explicitly solved anywhere in the solution procedure nur 
does it form part of the specified boundary conditions, and it follows that there is 
no guarantee that Eq. (2.28) would in fact be satisfied. One may now use the same 
argument to raise some doubts about the correctness of the Hirasaki and Hellums 
approach, as it enforces only the zero through-flow condition. How can one be sure 
that the slip velocities would vanish (or near enough so) on the boundaries? This 
question may be answered by considering the following hypothetical situation: 

Suppose that after a number of iterations of the solution procedure, the tangen- 
tial velocity w = d‘,$, - 6,.rjX at a certain point on the above-mentioned stationary 
boundary has been incorrectly predicted by the Hirasaki and Hellums formulation 
(i.e., some slip exists). However, w on the boundary is never actually calcuiated 
from the vector potential. This is because the calculation of II* from v using central 
differences would require a non-existing value of IC/, outside the boundary. Further, 
the velocity at the boundaries should constitute part of the boundary conditions. 
and not part of the solution. Hence, ~1 (like the other components of V) is instead 
set to zero. Figure 2.4 shows an example of this situation, The setting of a vanishing 
velocity on the boundary in this case has the following effects: 

(1 j In the Hirasaki and Hellums formulation. r//J = $I_ = 0 on this boundar);. 
Hence, u = S,tjZ - ~;I+!J, = 0, so that setting the normal component u to zero is con- 
sistent with the prescribed vector potential boundary conditions. 

(2) It is well known that a velocity field which is evaluated numcricafly from a 
vector potential satisfies the finite difference form of the continuity equation ::o 

7 - 

6 - 

5 - 
AX 

L - 

3 - 

2 - 

FIG. 2.4. The effect of assuming zero slip in the Hirasaki and Hellums approach. Dashed line, 
assumed profile; solid line, actual profile. 
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machine accuracy. Hence, if the velocity at a certain node is assigned to some value 
which differs from that produced by the vector potential, then the discretised 
dilatations at adjacent nodes (assuming central differencing is used) could become 
non-vanishing. This has the implication that the assigned boundary values of U, tr, 
and W, if different from those represented by the vector potential, can affect the 
dilatation at nodes which lie on the boundary and/or are one mesh point away 
from it. However, it may be shown that the tangential components of velocity may 
be arbitrarily modified without affecting the discretised dilatation at one mesh inter- 
val from the boundary. For example, at the node (2, j, k), the finite difference 
representation of V. V is given by 

V. V(2, j, k) = 43, j, w - U( 1, j, kj 
2 As 

+ 
o(2, j+ 1, k) - ~(2, j- 1, k) 

2 Ay 

+ 
42, j, k + 1) - ~(2, j. k - 1) 

26-7 
(2.29) 

Since the only boundary value appearing in Eq. (2.29) is u( 1, j, k), which being the 
normal component is not modified, then V. V at this node must remain unaltered 
irrespective of what is assigned to v( 1, j, k) and ~(1, j, k). On the boundary itself, it 
is not possible to examine V. V explicitly and consistently as central differencing 
cannot be used. But it is argued that since u( 1, j, k) = 0, any creation or destruction 
of mass implied by a non-zero dilatation would have to be confined to within the 
boundary as no mass can actually come out of, or through, such a boundary. And 
if further v( 1, j, k) and ~(1, j, k) are assigned to zero, creation or destruction of 
mass on this boundary cannot be possible. This implies that the assignment of the 
tangential velocity to zero on the boundary using the Hirasaki and Hellums for- 
mulation assures the satisfaction of the equation of continuity throughout the 
region. 

(3) The discrepancy between the assigned non-slip velocity and the slip velocity 
inferred by the vector potential (assuming that the Hirasaki and Hellums approach 
initially produces some slip) forms a feedback mechanism which tends to reduce the 
error in subsequent iterations. This is achieved directly through the vorticity boun- 
dary conditions. In this example, the y-component of vorticity at x = 0 (i = 1) is 
affected by the assumption of w = 0. Since on this plane 

(2.30) 

the resulting numerical value of I_‘, on the boundary in this example would be 
increased (see Fig. 2.4), and in turn induces an increase in shear which is necessary 
for diminishing the slip. A similar argument also holds when the slip is in the 
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negative direction. It is interesting here to point out that in the vorticity-vector 
potential formulation, using the Hirasaki and Hellums boundary conditions, it is 
vital that the vorticity boundary formulation incorporates the non-slip condition. 
Ozoe et al. [5] found that when the boundary vorticity was formulated in terms of 
the vector potential only (i.e., the direct application of Eq. (2.5) ), the velocity 
profiles did not extrapolate smoothly to zero, whilst good results were obtained 
when the boundary vorticities were expressed in terms of the velocities (similar to 
that of Eq. (2.30)). This finding also serves to strongly support the foregoing 
argument. 

Consider now the Richardson and Cornish formulation. From the definition of 
velocity and the boundary condition of \~r as given by Eq. (2.26), the tangential 
velocity components, v and MI, are necessarily zero on the boundaries. But as men- 
tioned earlier, the normal velocity component, U, as calculated from the vector 
potential may be non-zero, implying that fluid may be crossing the boundaries. 
Setting the normal velocity component to zero does nothing to alleviate the 
problem. From Eq. (2.29), it is seen that an alteration of u( I, j. k) leads to a non- 
zero dilatation at nodes one mesh from the boundary. That is, the correction of zt’ at 
i = 1 merely shifts the “leakage” to i = 2. This problem was encountered in the work 
of Leonardi et al. [9]. There also seems to be no natural mechanism by which the 
iteration process can effectively rectify this problem. The term which can bring 
about any feedback in this case in du/?x at i = 1 or i = 2. Since this term does not 
appear in any of the vorticity boundary conditions, and appears only as one of the 
many terms in the vorticity transport equation, littie (if any) effort can be made to 
stop the “leaks.” As a consequence, non-convergence or convergence to erroneous 
solutions can be expected. In an attempt to counter this lack of natural feedback, 
Reizes et al. [ 121 actually calculated the “leakage” velocities from the vector poten- 
tial, and compensated this by superposing a potential velocity field whose boundary 
values counteracted the “leaks.” Besides the increase in complexity due 10 the 
introduction of an extra variable (the scalar potential)? the vector-scalar potential 
formulation also produced unsatisfactory results. It has later been shown by Wang 
and Reizes [g] that the inclusion of the scalar potential in a non-staggere 
system can lead to substantial errors, and should be avoided if possible. 

3. A NEW APPROACH 

Although the Hirasaki and Hellums formulation for simply connected regions 
has the necessary properties which would permit a stable and meaningful con- 
vergence, it was shown earlier that difficulties may arise in multiply connected 
regions. In this section, a new approach is developed to handle the boundary con- 
ditions of the vector potential for multiply connected regions of simple, but 
nevertheless important, geometries-i.e., regions whose boundaries coincide with 
the coordinate surfaces. Extension of the technique to more complex regionsmay 
also be possible by applying a suitable transformation procedure. 
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Consider the doubly connected region confined by the concentric cylinders as 
shown in Fig. 3.1. The application of the Hirasaki and Hellums formulation results 
in the set of vector potential boundary conditions 

on the top and bottom plates, 

at r=ri, and 

(3.la) 

(3.lb) 

at r=ro. (See Fig. 3.1.) 
As for the rectangular annulus considered in Section 2, the analysis again resulted 

in one unknown. In this case, I/I~ on the outer cylinder has yet to be determined. To 
this end, we make use of the condition of no-slip on this surface, which requires 
that 

or 

where TV is the component of velocity in the circumferential direction. 

t 

FIG. 3.1. Solution region and the boundary conditions for v in the centrifuge example. 

(3.2) 

(3.3) 
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Equation 3.3 appears as a usable form of boundary condition for $=, as St/‘/?: 
can readily be calculated from the latest solution of $,. However, the direct use of 
Eq. (3.3) (i.e., using it as a Neumann condition) would lead to problems similar to 
those encountered by the Richardson and Cornish formulation. To ensure no 
leakage, the fact that $= equals a constant on this surface must be incorporated. 

Let there be L, M, and N mesh intervals in the r(i), Q(j), and z(k) directions. 
respectively. The second-order finite difference form of Eq. (3.3) at (L, j. k) may be 
rearranged to give 

so that $; may be evaluated at each point on the outer cylinder. Due to the trun- 
cation errors involved in the differencing of Eq. (3.3) and the lag between the 
solutions of $, and $_ (assuming that the solution has not yet converged), 
$,(L, j, k) as evaluated from Eq. (3.4) would not be expected to be constant over 
the whole of the outer cylinder. It is, however, likely that the errors in predicting 
tiZ(L, j, kj from Eq. (3.4) for all the points over this boundary are scattered around 
zero, so that their average would be a good estimate of the required constant. (Note 
that even if the mean error is not zero, it is, at worst, of the same order as the 
individual truncation errors. j Hence, the boundary value of II/_ at the surface Y = Y,, 
is proposed to be 

L. j, k+ l:l-tl/,(L,j, k- 113 

1 
+ 4$,(L - 1, j, k) - $,(L - 2. j. k) 1. (3.55 

From the latest solution of I/J~ and $=, the boundary value $,(L, j, k’) may be 
evaluated by Eq. (3.5) and updated after each iteration. 

To test the proposed scheme, two special cases of multiply connected flows were 
considered. in which other solution methods are available. The first was the 
solution to the incompressible flow within a concentric annular cavity with a 
rotating inner cylinder. (See Fig. 3.1. j Since this was an axisymmetric problem, it 
degenerated into a quasi two-dimensional problem which may be solved by any of 
the well-established 2-D techniques (e.g., [ 1 l] j. The radius ratio I’,!v~ and aspect 
ratio iq’(r,-ri) were 2 and 1, respectively. Because of the axisymmetry, it was suf- 
ficient to allocate only four mesh planes in the circumferential direction. Each of 
these mesh planes incorporated a uniform grid system of 21 x 21. To cope with this 
relatively coarse mesh, the Reynolds number (based on the gap dimension) was 
restricted to only 100. Figure 3.2 shows the comparison of results obtained by the 
proposed method and the axisymmetric solution obtained by the .stream 
functionivorticity/swirl-velocity formulation of [ 111. As may be seen, the agreement 
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FIG. 3.2. Comparison of circumferential velocities in the centrifuge example. Solid line, present 
analysis; dashed line, axisymmetric solution. 

was excellent, indicating that the proposed method was able to accurately predict 
the circumferential flow rate and therefore the required constant. 

The second test was a natural convection problem between two coaxial horizon- 
tal square prisms with the inner walls uniformly heated. The fluid used was com- 
pressible air whose density was assumed to be a function of temperature only. The 
outer box, with a length-to-width ratio of two, was fitted with a uniform grid of 
25 x 25 x 25, with the inner prism occupying the central 5 x 5 x 25 points. A 
Rayleigh number, Ra (based on the width of the outer box), of 50,000 was con- 
sidered. In addition to the equations of motion presented in Section 2, the energy 
transport equation and an equation of state were included in the solution 
procedure. Because of the symmetry, the net circumferential flow rate in this case 
must necessarily be zero. It therefore implies that $; on the surface of both cylin- 
ders must be identical. In the test problem, $_ on the outer walls was set to zero, 
whilst on the inner walls, tjZ = K was predicted by the proposed method. It was 
found that, irrespective of what was initially assigned to K, the converged value 
(computed in single precision on a VAX 11/780) was of the order of lo-” com- 
pared to a maximum value of the solution of 4.38. Figure 3.3 shows a stream-line 

FIG. 3.3. Stream-lines on the mid x - .v plane of the symmetrical natural convection example. 
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plot at the central x - y plane which clearly illustrates the symmetry of flow and the 
absence of any net flow around the annulus. The validity of the solution was further 
verified by solving the same problem in only one-half of the solution region 
(0 6 x < 0.5). Since the solution region was then considered simply connected, the 
Hirasaki and Hellums formulation was usable, which produced results which were. 
for all practical purposes, identical to those obtained by the proposed method. 

3. OTHER RESULTS AND DISCUSSION 

Due to the lack of three-dimensional multiply connected flow studies in the 
literature, comparison of the proposed technique with other modeis was not 
possible. Instead, a model problem was proposed, which perhaps can be used as a 
benchmark for future comparison purposes. The problem as illustrated in Fig. 4.i 
was chosen for this purpose because of its geometric simplicity, true three-dimen- 
sionality, and, of course, multiple connectivity, as well as for having some resem- 
blance to real problems and the possibility of interesting features such as floe 
separations and corner effects. It was essentially a natural convection problem in a 
region confined between two coaxial horizontal prisms of square cross sections. The 
inner surfaces were heated whilst one of the outer vertical side wails and both of the 
end plates were insulated. The remaining surfaces were cold. The temperatures of 
the hot and cold surfaces were 288K and 300K, respectively, and Rayleigh numbers 
of 5000 and 50,000 were studied. The fluid was air. with variable density (assumed 
to be a function of temperature only), but constant conductivity and viscosity. A 
uniform mesh of 31 x 31 x 31 for the outer prism was used. with the inner prism 
occupying the central 11 x 11 x 31 points. 

Unlike the symmetric problem of Section 3, the proposed scheme yielded non- 
zero values of I/J- on the inner surfaces, indicating that there were net “circumferen- 

FIG. 4.1. Schematic diagram of asymmetrical natural convection problem. A = Adiabatic: C = co!d; 
H = hot. 
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ibl 
FCC. 4.2. Stream-lines on the mid x - JJ plane for the asymmetric convection problem. (a) Ra = 5000, 

(b) Ra = 50,000. 

tial” flows around the square annuli. In the cases considered, the inner boundary 
values of I/= were 1.114 and 4.356 for Ra = 5000 and 50,000, respectively. The 
resulting net flow movement is clearly visible in Fig. 4.2, where the stream-lines on 
the central x - y plane are shown. This clockwise motion of the main stream was 
the result of the higher average temperatures on the side nearer the adiabetic wall 
(see Fig. 4.3). Smaller clockwise circulations were also present on the side nearer the 
cold wall as a result of the differential heating between the hot inner walls and the 
vertical cold wall of the outer box. The extent of this separation was seen to 
increase with increases in Ra. The higher Ra results also indicated substantial flow 
separations at the upper corner of the adiabatic wall as a result of the higher 
velocities. 

The fluid motions at other cross sections were much more complex as the stream- 
lines were described generally in three dimensions. To obtain these stream-lines, the 
technique of particle tracking, similar to that used by Mallinson and de Vahl 
Davis [4], was employed. Particles were released at various locations with the 
resulting tracks as shown in Figs. 4.4 to 4.7. For the lower Ra case, the flow field 

x 

[a) tbj 

FIG. 4.3. Temperature contours on the mid x - )’ plane for the asymmetric convection problem. 
(a j Ra = 5000, (b) Ra = 50,000. 
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j / 
\, 

FK;. 4.4. Particle released at (0.2.0.2.OD5 I, Ra = 5000. 

may be divided roughly into three main regimes, which were typified by the particle 
tracks presented. Regime 1 consisted of tracks which spiraled back and forth on a 
nest of toroidal surfaces situated closed to the end plates (05~SO.33, 1.67L:rSX 
The particles moved away from the ends near the inner side, and returned along the 
outer side of the toroids (see Fig. 4.4). A second set of spirals (regime 2) was 
apparent between the heated inner walls and the cold vertical side of the outer box. 
Figure 4.5 shows a particle released at (0.70.0.50,0.01), which followed a tightly 
coiled path between rhe inner walls and the toroidal zone, moving away from the 
ends whilst increasing in size, When a sufficient size was reached, this path began to 
coil around the rod and eventually followed a track which encased the toroidal 
zone, back to its starting point. For clarity, the latter part of this tightly coiled path 
is not shown in Fig. 4.5. In the central region (regime 3. which accounts for 
approximately 60 ?6 of the solution region). the tracks reduced to simple rings 
which were essentially two-dimensional and resembled those shown in Fig. 4.2a. 

As the Rayleigh number was increased, the toroidal region merged into an 
expanding regime 2 to form a series of paths similar to that shown in Fig. 4.6. The 

FIG. 4.5. Particle released at (0.7, 0.5, 0.01), Ra = 5000. 
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FIG. 4.6. Particle released at (0.77, 0.5, 0.1 ), Ra = 50,000. 

dilation of regime 2 also caused regime 3 to be pushed further towards the central 
region. The increase in the circumferential velocity due to the increase in Ra also 
tended to encourage flow separations at the corners. In Fig. 4.7, it is seen that for 
Ra = 50,000, a fourth regime was created due to the flow separation in the upper 
corner of the adiabetic wall. 

Tests were also conducted to determine the influence of the initial estimate of the 
unknown boundary value of eZ on the solution. To keep the amount of com- 
putation to a reasonable level, Ra and the number of mesh points were reduced to 
100 and 13 x 13 x 13, respectively. With all other fields initially set to zero, it was 
found that a unique solution was obtained irrespective of the initial estimate used 
(provided that the solution procedure did not diverge). As to be expected, however, 
the number of iterations required to reach convergence depended on how good the 
initial estimate was. In order to approach the correct value as quickly as possible, 
two methods were tested and found to be useful. 

The first involved the application of an overrelaxation factor to Eq. (3.5) such 

FIG. 4.7. Particle released at (0.1. 0.1, 0.1 ), Ra = 50.000. 
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TABLE 4.1 

Effects of Initial Estimate of K and Relaxation Factor in Eq. (4.1) on the Convergence Rate 

Value of K at 
convergence 

2.571 x lci 2 

that at the nzth iteration, the new estimate of the unknown vector potential II/_ = K’” 
was given by 

~n=~-l+~(K’-K?TZ-lj, 

where K’ is obtained from Eq. (3.5) and i is a suitable weighting factor. 

(4.1) 

In general, setting 1 just above 1 should accelerate the rate of convergence. In the 
test problem, convergence was obtained with 2 set to as high as 4. The optimum 
value appeared to be near 3, which corresponded to a reduction in computing time 
of about 50%. The results for other values of i are as shown in Table 4.1. 

Another method tested was a more elaborate extrapolation procedure, in which 
the trend of the increase or decrease of K’ was used to predict the asymptotic limit. 
For this test problem, an exponential curve was fitted through three successive 
values of K’ after every m (33) iterations. K was then extrapolated to infinity or to 
n steps, depending on whether the trend was exponentially decaying or increasing. 
It was found that nt= 6 and n = 3 produced substantial improvements, which 
reduced the number of iterations required from 162 (no extrapolation used) to 85. 

It should be pointed out that the above techniques for speeding up the process of 
searching for the correct value of K are by no means exhaustive, and the reader is 
invited to explore other possibilities. Judging from the fact that if K were fixed at 
the converged value throughout the iterative procedure only 56 iterations were 
required. there is probably still room for further improvement. However, it is expec- 
ted that some price must be paid for not having the prior knowledge of K. 

CONCLUDING REMARKS 

A new approach has been devised to permit the vector potential to be used in an 
important class of multiply connected regions. Its successful application was 
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demonstrated by the solution of several free and forced convection problems in 
annular cavities. The scheme was found to be stable, and suggestions were made for 
increasing its rate of convergence. 
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